3.4.19 \(\int \frac {x \sqrt {a+c x^2}}{d+e x} \, dx\) [319]

Optimal. Leaf size=127 \[ -\frac {(2 d-e x) \sqrt {a+c x^2}}{2 e^2}+\frac {\left (2 c d^2+a e^2\right ) \tanh ^{-1}\left (\frac {\sqrt {c} x}{\sqrt {a+c x^2}}\right )}{2 \sqrt {c} e^3}+\frac {d \sqrt {c d^2+a e^2} \tanh ^{-1}\left (\frac {a e-c d x}{\sqrt {c d^2+a e^2} \sqrt {a+c x^2}}\right )}{e^3} \]

[Out]

1/2*(a*e^2+2*c*d^2)*arctanh(x*c^(1/2)/(c*x^2+a)^(1/2))/e^3/c^(1/2)+d*arctanh((-c*d*x+a*e)/(a*e^2+c*d^2)^(1/2)/
(c*x^2+a)^(1/2))*(a*e^2+c*d^2)^(1/2)/e^3-1/2*(-e*x+2*d)*(c*x^2+a)^(1/2)/e^2

________________________________________________________________________________________

Rubi [A]
time = 0.07, antiderivative size = 127, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 5, integrand size = 20, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.250, Rules used = {829, 858, 223, 212, 739} \begin {gather*} \frac {\left (a e^2+2 c d^2\right ) \tanh ^{-1}\left (\frac {\sqrt {c} x}{\sqrt {a+c x^2}}\right )}{2 \sqrt {c} e^3}+\frac {d \sqrt {a e^2+c d^2} \tanh ^{-1}\left (\frac {a e-c d x}{\sqrt {a+c x^2} \sqrt {a e^2+c d^2}}\right )}{e^3}-\frac {\sqrt {a+c x^2} (2 d-e x)}{2 e^2} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(x*Sqrt[a + c*x^2])/(d + e*x),x]

[Out]

-1/2*((2*d - e*x)*Sqrt[a + c*x^2])/e^2 + ((2*c*d^2 + a*e^2)*ArcTanh[(Sqrt[c]*x)/Sqrt[a + c*x^2]])/(2*Sqrt[c]*e
^3) + (d*Sqrt[c*d^2 + a*e^2]*ArcTanh[(a*e - c*d*x)/(Sqrt[c*d^2 + a*e^2]*Sqrt[a + c*x^2])])/e^3

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 223

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 739

Int[1/(((d_) + (e_.)*(x_))*Sqrt[(a_) + (c_.)*(x_)^2]), x_Symbol] :> -Subst[Int[1/(c*d^2 + a*e^2 - x^2), x], x,
 (a*e - c*d*x)/Sqrt[a + c*x^2]] /; FreeQ[{a, c, d, e}, x]

Rule 829

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[(d + e*x)^(m
 + 1)*(c*e*f*(m + 2*p + 2) - g*c*d*(2*p + 1) + g*c*e*(m + 2*p + 1)*x)*((a + c*x^2)^p/(c*e^2*(m + 2*p + 1)*(m +
 2*p + 2))), x] + Dist[2*(p/(c*e^2*(m + 2*p + 1)*(m + 2*p + 2))), Int[(d + e*x)^m*(a + c*x^2)^(p - 1)*Simp[f*a
*c*e^2*(m + 2*p + 2) + a*c*d*e*g*m - (c^2*f*d*e*(m + 2*p + 2) - g*(c^2*d^2*(2*p + 1) + a*c*e^2*(m + 2*p + 1)))
*x, x], x], x] /; FreeQ[{a, c, d, e, f, g, m}, x] && NeQ[c*d^2 + a*e^2, 0] && GtQ[p, 0] && (IntegerQ[p] ||  !R
ationalQ[m] || (GeQ[m, -1] && LtQ[m, 0])) &&  !ILtQ[m + 2*p, 0] && (IntegerQ[m] || IntegerQ[p] || IntegersQ[2*
m, 2*p])

Rule 858

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Dist[g/e, Int[(d
+ e*x)^(m + 1)*(a + c*x^2)^p, x], x] + Dist[(e*f - d*g)/e, Int[(d + e*x)^m*(a + c*x^2)^p, x], x] /; FreeQ[{a,
c, d, e, f, g, m, p}, x] && NeQ[c*d^2 + a*e^2, 0] &&  !IGtQ[m, 0]

Rubi steps

\begin {align*} \int \frac {x \sqrt {a+c x^2}}{d+e x} \, dx &=-\frac {(2 d-e x) \sqrt {a+c x^2}}{2 e^2}+\frac {\int \frac {-a c d e+c \left (2 c d^2+a e^2\right ) x}{(d+e x) \sqrt {a+c x^2}} \, dx}{2 c e^2}\\ &=-\frac {(2 d-e x) \sqrt {a+c x^2}}{2 e^2}-\frac {\left (d \left (c d^2+a e^2\right )\right ) \int \frac {1}{(d+e x) \sqrt {a+c x^2}} \, dx}{e^3}+\frac {\left (2 c d^2+a e^2\right ) \int \frac {1}{\sqrt {a+c x^2}} \, dx}{2 e^3}\\ &=-\frac {(2 d-e x) \sqrt {a+c x^2}}{2 e^2}+\frac {\left (d \left (c d^2+a e^2\right )\right ) \text {Subst}\left (\int \frac {1}{c d^2+a e^2-x^2} \, dx,x,\frac {a e-c d x}{\sqrt {a+c x^2}}\right )}{e^3}+\frac {\left (2 c d^2+a e^2\right ) \text {Subst}\left (\int \frac {1}{1-c x^2} \, dx,x,\frac {x}{\sqrt {a+c x^2}}\right )}{2 e^3}\\ &=-\frac {(2 d-e x) \sqrt {a+c x^2}}{2 e^2}+\frac {\left (2 c d^2+a e^2\right ) \tanh ^{-1}\left (\frac {\sqrt {c} x}{\sqrt {a+c x^2}}\right )}{2 \sqrt {c} e^3}+\frac {d \sqrt {c d^2+a e^2} \tanh ^{-1}\left (\frac {a e-c d x}{\sqrt {c d^2+a e^2} \sqrt {a+c x^2}}\right )}{e^3}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.32, size = 133, normalized size = 1.05 \begin {gather*} \frac {e (-2 d+e x) \sqrt {a+c x^2}-4 d \sqrt {-c d^2-a e^2} \tan ^{-1}\left (\frac {\sqrt {c} (d+e x)-e \sqrt {a+c x^2}}{\sqrt {-c d^2-a e^2}}\right )-\frac {\left (2 c d^2+a e^2\right ) \log \left (-\sqrt {c} x+\sqrt {a+c x^2}\right )}{\sqrt {c}}}{2 e^3} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(x*Sqrt[a + c*x^2])/(d + e*x),x]

[Out]

(e*(-2*d + e*x)*Sqrt[a + c*x^2] - 4*d*Sqrt[-(c*d^2) - a*e^2]*ArcTan[(Sqrt[c]*(d + e*x) - e*Sqrt[a + c*x^2])/Sq
rt[-(c*d^2) - a*e^2]] - ((2*c*d^2 + a*e^2)*Log[-(Sqrt[c]*x) + Sqrt[a + c*x^2]])/Sqrt[c])/(2*e^3)

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(302\) vs. \(2(109)=218\).
time = 0.08, size = 303, normalized size = 2.39

method result size
default \(\frac {\frac {x \sqrt {c \,x^{2}+a}}{2}+\frac {a \ln \left (x \sqrt {c}+\sqrt {c \,x^{2}+a}\right )}{2 \sqrt {c}}}{e}-\frac {d \left (\sqrt {c \left (x +\frac {d}{e}\right )^{2}-\frac {2 c d \left (x +\frac {d}{e}\right )}{e}+\frac {a \,e^{2}+c \,d^{2}}{e^{2}}}-\frac {\sqrt {c}\, d \ln \left (\frac {-\frac {c d}{e}+c \left (x +\frac {d}{e}\right )}{\sqrt {c}}+\sqrt {c \left (x +\frac {d}{e}\right )^{2}-\frac {2 c d \left (x +\frac {d}{e}\right )}{e}+\frac {a \,e^{2}+c \,d^{2}}{e^{2}}}\right )}{e}-\frac {\left (a \,e^{2}+c \,d^{2}\right ) \ln \left (\frac {\frac {2 a \,e^{2}+2 c \,d^{2}}{e^{2}}-\frac {2 c d \left (x +\frac {d}{e}\right )}{e}+2 \sqrt {\frac {a \,e^{2}+c \,d^{2}}{e^{2}}}\, \sqrt {c \left (x +\frac {d}{e}\right )^{2}-\frac {2 c d \left (x +\frac {d}{e}\right )}{e}+\frac {a \,e^{2}+c \,d^{2}}{e^{2}}}}{x +\frac {d}{e}}\right )}{e^{2} \sqrt {\frac {a \,e^{2}+c \,d^{2}}{e^{2}}}}\right )}{e^{2}}\) \(303\)
risch \(-\frac {\left (-e x +2 d \right ) \sqrt {c \,x^{2}+a}}{2 e^{2}}+\frac {\ln \left (x \sqrt {c}+\sqrt {c \,x^{2}+a}\right ) a}{2 e \sqrt {c}}+\frac {\ln \left (x \sqrt {c}+\sqrt {c \,x^{2}+a}\right ) \sqrt {c}\, d^{2}}{e^{3}}+\frac {d \ln \left (\frac {\frac {2 a \,e^{2}+2 c \,d^{2}}{e^{2}}-\frac {2 c d \left (x +\frac {d}{e}\right )}{e}+2 \sqrt {\frac {a \,e^{2}+c \,d^{2}}{e^{2}}}\, \sqrt {c \left (x +\frac {d}{e}\right )^{2}-\frac {2 c d \left (x +\frac {d}{e}\right )}{e}+\frac {a \,e^{2}+c \,d^{2}}{e^{2}}}}{x +\frac {d}{e}}\right ) a}{e^{2} \sqrt {\frac {a \,e^{2}+c \,d^{2}}{e^{2}}}}+\frac {d^{3} \ln \left (\frac {\frac {2 a \,e^{2}+2 c \,d^{2}}{e^{2}}-\frac {2 c d \left (x +\frac {d}{e}\right )}{e}+2 \sqrt {\frac {a \,e^{2}+c \,d^{2}}{e^{2}}}\, \sqrt {c \left (x +\frac {d}{e}\right )^{2}-\frac {2 c d \left (x +\frac {d}{e}\right )}{e}+\frac {a \,e^{2}+c \,d^{2}}{e^{2}}}}{x +\frac {d}{e}}\right ) c}{e^{4} \sqrt {\frac {a \,e^{2}+c \,d^{2}}{e^{2}}}}\) \(331\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x*(c*x^2+a)^(1/2)/(e*x+d),x,method=_RETURNVERBOSE)

[Out]

1/e*(1/2*x*(c*x^2+a)^(1/2)+1/2*a/c^(1/2)*ln(x*c^(1/2)+(c*x^2+a)^(1/2)))-d/e^2*((c*(x+d/e)^2-2*c*d/e*(x+d/e)+(a
*e^2+c*d^2)/e^2)^(1/2)-c^(1/2)*d/e*ln((-c*d/e+c*(x+d/e))/c^(1/2)+(c*(x+d/e)^2-2*c*d/e*(x+d/e)+(a*e^2+c*d^2)/e^
2)^(1/2))-(a*e^2+c*d^2)/e^2/((a*e^2+c*d^2)/e^2)^(1/2)*ln((2*(a*e^2+c*d^2)/e^2-2*c*d/e*(x+d/e)+2*((a*e^2+c*d^2)
/e^2)^(1/2)*(c*(x+d/e)^2-2*c*d/e*(x+d/e)+(a*e^2+c*d^2)/e^2)^(1/2))/(x+d/e)))

________________________________________________________________________________________

Maxima [A]
time = 0.31, size = 119, normalized size = 0.94 \begin {gather*} \sqrt {c} d^{2} \operatorname {arsinh}\left (\frac {c x}{\sqrt {a c}}\right ) e^{\left (-3\right )} - \sqrt {c d^{2} e^{\left (-2\right )} + a} d \operatorname {arsinh}\left (\frac {c d x}{\sqrt {a c} {\left | x e + d \right |}} - \frac {a e}{\sqrt {a c} {\left | x e + d \right |}}\right ) e^{\left (-2\right )} + \frac {1}{2} \, \sqrt {c x^{2} + a} x e^{\left (-1\right )} + \frac {a \operatorname {arsinh}\left (\frac {c x}{\sqrt {a c}}\right ) e^{\left (-1\right )}}{2 \, \sqrt {c}} - \sqrt {c x^{2} + a} d e^{\left (-2\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(c*x^2+a)^(1/2)/(e*x+d),x, algorithm="maxima")

[Out]

sqrt(c)*d^2*arcsinh(c*x/sqrt(a*c))*e^(-3) - sqrt(c*d^2*e^(-2) + a)*d*arcsinh(c*d*x/(sqrt(a*c)*abs(x*e + d)) -
a*e/(sqrt(a*c)*abs(x*e + d)))*e^(-2) + 1/2*sqrt(c*x^2 + a)*x*e^(-1) + 1/2*a*arcsinh(c*x/sqrt(a*c))*e^(-1)/sqrt
(c) - sqrt(c*x^2 + a)*d*e^(-2)

________________________________________________________________________________________

Fricas [A]
time = 3.95, size = 669, normalized size = 5.27 \begin {gather*} \left [\frac {{\left (2 \, \sqrt {c d^{2} + a e^{2}} c d \log \left (-\frac {2 \, c^{2} d^{2} x^{2} - 2 \, a c d x e + a c d^{2} - 2 \, \sqrt {c d^{2} + a e^{2}} {\left (c d x - a e\right )} \sqrt {c x^{2} + a} + {\left (a c x^{2} + 2 \, a^{2}\right )} e^{2}}{x^{2} e^{2} + 2 \, d x e + d^{2}}\right ) + {\left (2 \, c d^{2} + a e^{2}\right )} \sqrt {c} \log \left (-2 \, c x^{2} - 2 \, \sqrt {c x^{2} + a} \sqrt {c} x - a\right ) + 2 \, \sqrt {c x^{2} + a} {\left (c x e^{2} - 2 \, c d e\right )}\right )} e^{\left (-3\right )}}{4 \, c}, -\frac {{\left (4 \, \sqrt {-c d^{2} - a e^{2}} c d \arctan \left (-\frac {\sqrt {-c d^{2} - a e^{2}} {\left (c d x - a e\right )} \sqrt {c x^{2} + a}}{c^{2} d^{2} x^{2} + a c d^{2} + {\left (a c x^{2} + a^{2}\right )} e^{2}}\right ) - {\left (2 \, c d^{2} + a e^{2}\right )} \sqrt {c} \log \left (-2 \, c x^{2} - 2 \, \sqrt {c x^{2} + a} \sqrt {c} x - a\right ) - 2 \, \sqrt {c x^{2} + a} {\left (c x e^{2} - 2 \, c d e\right )}\right )} e^{\left (-3\right )}}{4 \, c}, \frac {{\left (\sqrt {c d^{2} + a e^{2}} c d \log \left (-\frac {2 \, c^{2} d^{2} x^{2} - 2 \, a c d x e + a c d^{2} - 2 \, \sqrt {c d^{2} + a e^{2}} {\left (c d x - a e\right )} \sqrt {c x^{2} + a} + {\left (a c x^{2} + 2 \, a^{2}\right )} e^{2}}{x^{2} e^{2} + 2 \, d x e + d^{2}}\right ) - {\left (2 \, c d^{2} + a e^{2}\right )} \sqrt {-c} \arctan \left (\frac {\sqrt {-c} x}{\sqrt {c x^{2} + a}}\right ) + \sqrt {c x^{2} + a} {\left (c x e^{2} - 2 \, c d e\right )}\right )} e^{\left (-3\right )}}{2 \, c}, -\frac {{\left (2 \, \sqrt {-c d^{2} - a e^{2}} c d \arctan \left (-\frac {\sqrt {-c d^{2} - a e^{2}} {\left (c d x - a e\right )} \sqrt {c x^{2} + a}}{c^{2} d^{2} x^{2} + a c d^{2} + {\left (a c x^{2} + a^{2}\right )} e^{2}}\right ) + {\left (2 \, c d^{2} + a e^{2}\right )} \sqrt {-c} \arctan \left (\frac {\sqrt {-c} x}{\sqrt {c x^{2} + a}}\right ) - \sqrt {c x^{2} + a} {\left (c x e^{2} - 2 \, c d e\right )}\right )} e^{\left (-3\right )}}{2 \, c}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(c*x^2+a)^(1/2)/(e*x+d),x, algorithm="fricas")

[Out]

[1/4*(2*sqrt(c*d^2 + a*e^2)*c*d*log(-(2*c^2*d^2*x^2 - 2*a*c*d*x*e + a*c*d^2 - 2*sqrt(c*d^2 + a*e^2)*(c*d*x - a
*e)*sqrt(c*x^2 + a) + (a*c*x^2 + 2*a^2)*e^2)/(x^2*e^2 + 2*d*x*e + d^2)) + (2*c*d^2 + a*e^2)*sqrt(c)*log(-2*c*x
^2 - 2*sqrt(c*x^2 + a)*sqrt(c)*x - a) + 2*sqrt(c*x^2 + a)*(c*x*e^2 - 2*c*d*e))*e^(-3)/c, -1/4*(4*sqrt(-c*d^2 -
 a*e^2)*c*d*arctan(-sqrt(-c*d^2 - a*e^2)*(c*d*x - a*e)*sqrt(c*x^2 + a)/(c^2*d^2*x^2 + a*c*d^2 + (a*c*x^2 + a^2
)*e^2)) - (2*c*d^2 + a*e^2)*sqrt(c)*log(-2*c*x^2 - 2*sqrt(c*x^2 + a)*sqrt(c)*x - a) - 2*sqrt(c*x^2 + a)*(c*x*e
^2 - 2*c*d*e))*e^(-3)/c, 1/2*(sqrt(c*d^2 + a*e^2)*c*d*log(-(2*c^2*d^2*x^2 - 2*a*c*d*x*e + a*c*d^2 - 2*sqrt(c*d
^2 + a*e^2)*(c*d*x - a*e)*sqrt(c*x^2 + a) + (a*c*x^2 + 2*a^2)*e^2)/(x^2*e^2 + 2*d*x*e + d^2)) - (2*c*d^2 + a*e
^2)*sqrt(-c)*arctan(sqrt(-c)*x/sqrt(c*x^2 + a)) + sqrt(c*x^2 + a)*(c*x*e^2 - 2*c*d*e))*e^(-3)/c, -1/2*(2*sqrt(
-c*d^2 - a*e^2)*c*d*arctan(-sqrt(-c*d^2 - a*e^2)*(c*d*x - a*e)*sqrt(c*x^2 + a)/(c^2*d^2*x^2 + a*c*d^2 + (a*c*x
^2 + a^2)*e^2)) + (2*c*d^2 + a*e^2)*sqrt(-c)*arctan(sqrt(-c)*x/sqrt(c*x^2 + a)) - sqrt(c*x^2 + a)*(c*x*e^2 - 2
*c*d*e))*e^(-3)/c]

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {x \sqrt {a + c x^{2}}}{d + e x}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(c*x**2+a)**(1/2)/(e*x+d),x)

[Out]

Integral(x*sqrt(a + c*x**2)/(d + e*x), x)

________________________________________________________________________________________

Giac [A]
time = 1.92, size = 135, normalized size = 1.06 \begin {gather*} -\frac {2 \, {\left (c d^{3} + a d e^{2}\right )} \arctan \left (-\frac {{\left (\sqrt {c} x - \sqrt {c x^{2} + a}\right )} e + \sqrt {c} d}{\sqrt {-c d^{2} - a e^{2}}}\right ) e^{\left (-3\right )}}{\sqrt {-c d^{2} - a e^{2}}} - \frac {{\left (2 \, c^{\frac {3}{2}} d^{2} + a \sqrt {c} e^{2}\right )} e^{\left (-3\right )} \log \left ({\left | -\sqrt {c} x + \sqrt {c x^{2} + a} \right |}\right )}{2 \, c} + \frac {1}{2} \, \sqrt {c x^{2} + a} {\left (x e^{\left (-1\right )} - 2 \, d e^{\left (-2\right )}\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(c*x^2+a)^(1/2)/(e*x+d),x, algorithm="giac")

[Out]

-2*(c*d^3 + a*d*e^2)*arctan(-((sqrt(c)*x - sqrt(c*x^2 + a))*e + sqrt(c)*d)/sqrt(-c*d^2 - a*e^2))*e^(-3)/sqrt(-
c*d^2 - a*e^2) - 1/2*(2*c^(3/2)*d^2 + a*sqrt(c)*e^2)*e^(-3)*log(abs(-sqrt(c)*x + sqrt(c*x^2 + a)))/c + 1/2*sqr
t(c*x^2 + a)*(x*e^(-1) - 2*d*e^(-2))

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {x\,\sqrt {c\,x^2+a}}{d+e\,x} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x*(a + c*x^2)^(1/2))/(d + e*x),x)

[Out]

int((x*(a + c*x^2)^(1/2))/(d + e*x), x)

________________________________________________________________________________________